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A major challenge in sustainability science is identifying targets that
maximize ecosystem benefits to humanity while minimizing the risk of
crossing critical system thresholds. One critical threshold is the biomass at
which populations become so depleted that their population growth rates
become negative—depensation. Here, we evaluate how the value of moni-
toring information increases as a natural resource spends more time near
the critical threshold. This benefit emerges because higher monitoring
precision promotes higher yield and a greater capacity to recover from
overharvest. We show that precautionary buffers that trigger increased
monitoring precision as resource levels decline may offer a way to minimize
monitoring costs and maximize profits. In a world of finite resources,
improving our understanding of the trade-off between precision in estimates
of population status and the costs of mismanagement will benefit
stakeholders that shoulder the burden of these economic and social costs.
1. Introduction
Decision-makers seeking to avoid the collapse of financial, public health or
military defence systems often rely on detailed information to manage risk.
However, high-precision monitoring of these systems is often costly, requires
analysis and storage of large datasets and can delay decision making. In natural
resource management, a major question is how much monitoring is needed to
maximize the delivery of ecosystem benefits to people while minimizing the
risk of species or ecosystem collapse [1–3]?

The status of a species or ecosystem is determined from monitoring or survey
data, and assessed relative to one or more minimum thresholds, below which the
risk of species or socio-economic collapse surpasses the risk tolerance of manage-
ment. For example, in the management of a single natural resource like a fishery,
management strategies often include lower population limits belowwhich harvest
is suspended (i.e. a ‘limit reference point’). Thresholds are accounted for in man-
agement strategies in the form of decision triggers [4] and in the form of
reference points designed to minimize the risk of falling below a productivity
threshold [5]. This management threshold is set, in part, because managers
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recognize thatwhen systems fall below this threshold there is an
elevated risk of serious or irreversible harm to populations, eco-
systems, economies and societies. Typically, a management
threshold is designed to allow sustainable harvest, but also to
minimize the chances that a population will cross a biological
threshold, below which irreversible harm can occur to a popu-
lation [6]. When populations are overharvested, they can
experience phenomena such as inbreeding depression, predator
pits or mate limitation [7], which at critically low densities can
lead to population extinction (i.e. an extinction vortex [8]). The
consequences of crossing certain thresholds, such as depensa-
tory thresholds, are even greater since depensation can cause
irreversible population collapse. The crossing of other
thresholds, such as those defined by limit reference points, is
often reversible but can also have devastating social and econ-
omic consequences [9], particularly when crossing them
triggers cessation of harvest or reduced access.

High-precision monitoring can lower the risk of crossing
critical thresholds and ensure the delivery of services, but
can also be very expensive [2,3]. Even with consistent and
intensive monitoring, managers may never have perfect
knowledge of how close a population is to crossing a critical
threshold, or whether such a threshold exists. For example,
Allee effects have long been suspected to occur in fish popu-
lations and evidence suggests that they may be the cause of
some population collapses, but evidence for these effects can
be hard to come by [10,11]. ‘Emergent’ Allee effects can
result from increases in predator abundance even if prey popu-
lations remain constant [12]. Even in a case where a threshold
is known to exist two factors would prevent managers from
knowing how close a stock is to such a threshold. First,
shifts in the external drivers that affect natural populations
(e.g. the environment) are not always predictable, which
means that assessments may not detect the location of a
threshold before it is crossed [13]. Second, in any survey,
there is measurement error, which even in well-studied popu-
lations can be high. Both of these sources of uncertainty mean
that an assessment might incorrectly categorize a population
as being a ‘safe’ distance from a threshold, when in reality
the population is at or past a threshold beyond which it will
take decades to recover. Limited monitoring resources and
an incomplete understanding of ecosystems can restrict efforts
to devise monitoring strategies that—without crossing a
threshold—both maximize ecosystem services and balance
risk of harvesting across multiple stakeholders.

Previous studies have emphasized that intensive monitor-
ing is not always beneficial, particularly when such efforts
incur high costs that outweigh the management or conserva-
tion benefits [3], such as monitoring extremely rare or cryptic
threatened species [14], or monitoring a proportion of the
population that does not provide a precise index of abun-
dance. Here, we extend these studies by focusing on the
value of monitoring information for harvested populations
with critical biological thresholds. Our expectation is that
the value of monitoring depends not only on how far a popu-
lation is from the threshold, but also on population state,
whereby a population that spends more time close to a criti-
cal threshold benefits more from precise monitoring than one
that spends time far from it, and that precise monitoring will
promote the resilience of degraded populations when they
are overexploited. However, these simple expectations may
not be fully borne out in a dynamic system. Thus, we seek
to explore when and where our expectation holds, and
what elements of a natural resource system strengthen the
benefit of state-dependent monitoring. We do this by
asking four questions:

(i) How do monitoring precision and harvest rate affect
the risk of population collapse and the value of the
resource?

(ii) Does the value of monitoring increase with higher
proximity to a critical threshold?

(iii) Can monitoring allow harvested populations to
recover from dangerously low levels?

(iv) How can managers balance the costs and benefits of
monitoring populations prone to collapse?

2. Methods
(a) Closed-loop management strategy evaluation

overview
We used a closed-loop management strategy evaluation, a tool
that evaluates the likely consequence of applying a harvest
strategy, given uncertainty in a system’s dynamics [15]. The
simulation proceeded in four steps. First, we simulated the
biological dynamics of a system. Second, we simulated a moni-
toring process, where the total biomass of the resource was
surveyed with some error. Third, we used an assessment
model to simulate the estimation of system biomass based on
data from the survey. Fourth, a management model determined
the level of resource harvest given the estimated biomass. The
harvest was taken out of the true population size each year.
The entire process was repeated for a 50-year simulation with
10 000 replicate iterations.
(b) Modelling a natural resource with critical biological
threshold

Biological process model: to describe how monitoring investment
is related to thresholds, we focused on a natural resource system
targeting a single species—a management system inspired by a
fishery, but is easily transferable to wildlife or forestry resources.
We specifically modelled species biomass through time using a
reparametrized logistic model with depensation and resource
removal [16]. Allee effects are fairly common in animal popu-
lations and are thought to occur in fish stocks mainly as a
result of predation when prey are at low densities [17]. The
model is described as follows:

DBt

Dt
¼ rBt 1� Bt

K

� �
Bt

K
� A

K

� �
� Yt, ð2:1Þ

where r is the intrinsic rate of increase, Bt is the resource biomass
in year t, K is the carrying capacity of the resource, A is the theor-
etical biomass at which the population growth is negative even in
the absence of harvest or other removals (i.e. the critical biologi-
cal threshold, also known as an Allee effect) and Yt is the yield of
harvested biomass at time t (electronic supplementary material,
figure S1). The strength of the Allee effect is governed by the
value of A. A values≤ 0 generate scenarios without Allee effects,
but low productivity. For example, when A≅−500, the model
closely resembles the logistic function. To test the sensitivity of
results to stochastic environmental variation, we incorporated
environmental variation into our model by examining the role
of random temporally uncorrelated lognormal variation in the
intrinsic rate of increase, r.
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(c) Monitoring and assessment models
Ideally, natural resource managers would have perfect infor-
mation about resource biomass in a given year (Bt+1) based on
monitoring of the previous year’s biomass (Bt), knowledge
about life history and productivity, and some measure of the
yield (Yt). However, managers rely on estimates of biomass (here-
after referred to as B̂t) and often have to make assumptions about
the values and uncertainty of certain life-history parameters.
The degree to which B̂t is a precise representation of the true
resource biomass (Bt) is determined by monitoring precision.
We modelled monitoring (observation) error as a lognormally
distributed random variable with mean − σ2/2 and variance σ.
Hereafter, we refer to monitoring precision by reporting the coef-
ficient of variation (CV) to account for differences in the mean.
The degree of monitoring precision in any given system is gener-
ally based on the spatial and temporal resolution of monitoring
relative to the distribution and dynamics of the resource being
harvested. Therefore, at higher monitoring precision (lower σ),
B̂t approaches the true biomass Bt. We assumed that as monitor-
ing becomes less precise, the deviation of the estimated biomass
from the true biomass increases exponentially (electronic
supplementary materials, figure S1). We also assumed monitor-
ing precision was not autocorrelated and was only dependent
upon the current year’s monitoring. Note that our simulation
of variation in monitoring is focused on precision—variation in
estimated biomass ðB̂tÞ, not accuracy, which would involve also
simulating variation in the mean of estimated biomass (B̂t). Pre-
cision is high when monitoring adequately captures the spatial
and spatio-temporal distribution of the resource.
(d) Management model
When monitoring data are low resolution, estimates of future
biomass can be highly uncertain, which can lead to under- or
over-harvesting. To simulate resource harvest in our model,
we first calculated the biomass corresponding to maximum
sustainable yield of the stock (BMSY), where

BMSY ¼ A
3
þ K

3
þ A2 � AK þ K2

3
, ð2:2Þ

which is a deterministic solution for BMSY under equilibrium con-
ditions. From that we then calculated the maximum sustainable
yield (YMSY) as

YMSY ¼ rBMSY 1� BMSY

K

� �
BMSY

K
� A

K

� �
: ð2:3Þ

The harvest mortality rate at YMSY that then produces BMSY is
defined as:

HMSY ¼ YMSY

BMSY
: ð2:4Þ

These estimates of YMSY and BMSY approximate common
reference points in management as the long-term average yield
and the biomass that produces it. Our simulated management
model implemented an adaptive policy whereby allowable
removals are set annually based on estimated population bio-
mass (e.g. [18]). Consistent with many such harvest rules, we
introduced a minimum biomass level, here 0.25BMSY, where no
harvest is allowed (i.e. the limit reference point; (e.g. [19])). A
generic form of such ‘hockey stick’ harvest control rules is that
the harvest rate in year t, Ht, equals:

Ht ¼ Hmax min 1,max 0,
B̂t � Blim

Btar � Blim

" #" #
: ð2:5Þ

Where Hmax is the policy-defined maximum harvest rate (often
near the harvest rate that maximizes long-term catch), Blim is
the limit reference point below which no catch is permitted
and Btar is the target reference point (often BMSY). Under these
control rules, the population is harvested at a specified maxi-
mum harvest rate when the estimated population is at or above
BMSY, is harvested at decreasing rates as the estimated population
falls below BMSY and is set to 0 when the estimated population is
below Blim.

The total yield at time t was therefore

Yt ¼ HtB̂t: ð2:6Þ

This yield was then fed back into the process model described
above to determine the true biomass the following year (Bt+1) and
the model continued for a 50-year simulation. For graphical rep-
resentation of the management model and examples of 50-year
simulations with low and high uncertainty in estimated biomass,
see electronic supplementary material, figure S1.

There is no single established value for Blim, but often ranges
between near 0 to greater than 0.75BMSY for species that have
high ecological value like forage fish to values below 0.1 BMSY

[19,20]. Here, we chose an intermediate value of Blim = 0.25BMSY,
or when 0.25BMSY <A, we set Blim =A.

We considered variation in harvest pressure that was both
less than and greater than harvest rate at maximum sustainable
yield by defining maximum harvest rate (Hmax) as a proportion
( p) of the harvest rate at maximum sustainable yield (HMSY):

Hmax ¼ pHMSY: ð2:7Þ
(e) Value of the resource and cost of monitoring
To consider the value and cost of the resource, we used a series
of standard expressions in bioeconomic modelling [21]. We
estimated the value of the resource extracted at time t (Vt) as

Vt ¼ wYt � ceYt=Bt, ð2:8Þ
where w is the unit price of the resource and ce is the cost of
extracting that a fraction Yt/Bt of the total resource at time t
(essentially cost per unit fishing effort). If the costs and benefits
are borne by the same party then Vt represents profit, but since
we consider the costs of monitoring being borne by the same
and different parties below, we refer to this loosely as value.
We estimated the net present value (NPV) of the resource
across the full duration of the simulation as

NPV ¼
X

Vtdt, ð2:9Þ

where the discount coefficient (d ) decreases through time
following the function:

dt ¼ 1
1þ dt

, ð2:10Þ

and δ is a value between 0 and 1 that represents the rate atwhich the
future value is discounted through time.We assumed that themar-
ginal cost of increasing precision was always positive, such that
there was a lower cost to move from low to moderate information
than frommoderate to high information. NPV is assessed indepen-
dent of cost ofmonitoring. The cost ofmonitoring (Cm) was dictated
by two parameters in the monitoring cost function:

Cm ¼
X50
t¼1

cie�csst , ð2:11Þ

where monitoring costs for the duration of the 50-year simulation
are determined by the parameters ci and cs, which describe
the slope and intercept of the cost function andσt is the CV the esti-
mate of biomass based on the monitoring at time t. When cs = 1, the
cost function is approximately linear, whereas when cs > 1 the cost
of increasing monitoring precision is an exponential function.
Because our model is heuristic, the absolute values of p, ce, ci, and
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cs can be varied without losing generality; therefore, in examining
the economic costs and benefits of different harvest rates andmoni-
toring efforts, we focused on the relative financial costs and
benefits. For a description of all parameters see electronic sup-
plementary material, table S2.

( f ) Scenario analysis
We explored a series of management scenarios using our model
to evaluate how variation in monitoring precision affects the har-
vested population and the return on monitoring investment.
Each of the simulations had the same parameterization: A = 10,
r = 3.2, K = 101, BMSY = 70, w = 20 and ce = 200.

(i) How do monitoring precision and harvest rate affect the risk
of population collapse and the value of the resource?

We quantified how changes in monitoring precision and the maxi-
mum harvest rate (Hmax) affected the NPV and risk of population
collapse by simulating 10 000 iterations of 50-year simulations for
a range of monitoring investment (CV of biomass: 0.0–0.5) and a
proportion of maximum harvest rates (pHMSY). Here, the pro-
portion of maximum harvest rate ( p) was explored from 0.0–2.0
with a starting population size at carrying capacity (K). To visual-
ize the model and dynamics at the extreme ends of monitoring
precision, we extracted example time series from low-precision
(CV= 0.5) and high-precision monitoring (CV = 0.1) harvest at
p = 1. We then estimated the median NPV and the probability of
population collapse for a range of combinations of monitoring pre-
cision and maximum harvest rates.

(ii) Does the value of monitoring increase with higher proximity
to a critical threshold?

Wehypothesized that populations spending higher amounts of time
close to a critical threshold would benefit most from high-precision
monitoring. To test this hypothesis, we compared how the amount
of time a simulated population spent in the danger zone (<
0.8BMSY) affected the NPV of populations for simulations with
high and low monitoring precision. To simulate populations where
the resource spent increasingly more time close to the critical
threshold, we conducted simulations across a range of harvest
rates. Higher harvest rates tend to drive the resource down in bio-
mass and cause the resource to spend an increasingly frequent
amount of time near the critical threshold. Therefore, we examined
how the difference in NPV between high-precision (CV= 0.1) and
low-precision (CV= 0.5) monitoring changed as harvest rates
increased and populations spent increasingly higher amounts of
time near the critical threshold. We conducted these simulations
similarly as above, with 10 000 iterations of 50-year simulations,
with a starting biomass at carrying capacity (K), and a biological
threshold ofA = 10. Then, for each simulation,we calculated the frac-
tion of the time series where the population was categorized in the
danger zone (<0.8BMSY) and correlated the precision of monitoring
to the median fraction of time a population spent categorized
as overharvested.

(iii) Can monitoring allow harvested populations to recover from
dangerously low levels?

We hypothesized that high-precision monitoring can increase
the probability a depleted resource will recover from an over-
harvested state. High monitoring precision can allow managers
to quickly identify when populations are overharvested and
reduce or stop harvest until the population has recovered. To test
this hypothesis, we determined what combination of monitoring
precision and harvest pressure maximized population recovery
from the danger zone (< 0.8BMSY) to sustainable harvest levels (>
0.8BMSY)across replicate time series. Similar to the previous
scenarios, we then ran 10 000 50-year simulations of our manage-
ment strategy evaluation model for a range of different harvest
and monitoring efforts (CV of biomass: 0.0–0.5; pHMSY 0.0–2.0).
For each simulation of a combination of monitoring and harvest
efforts, we estimated the number of times a population recovered
from below to above the 0.8BMSY threshold and then estimated
the median number of recoveries across the 10 000 iterations.

(iv) How can managers balance the costs and benefits of
monitoring populations prone to collapse?

Managers are presented with a challenge of determining what
combination of harvest rates and monitoring investment are
appropriate for a given system given the costs of improving moni-
toring precision and the negative economic consequences of
harvesting modestly. The appropriate solution will depend on
their tolerance to risk of population collapse and their access to
monitoring resources. One option presents stakeholders with
different ‘safe’ combinations of monitoring precision and resource
extraction rates, given a willingness to accept some probability
of population collapse. Thus, a ‘safe operating space’ [22] that
includes a suite of different monitoring and harvest levels can be
defined for a given risk tolerance. Here we provide an example
of this type of safe operating space for a range of risk tolerance
levels defined by a willingness to accept a 20%, 10%, 5% or 1%
probability of population collapse. To determine the safe operating
space,we conducted a suite of 50-year simulationswith 10 000 iter-
ations with the same parameter combinations detailed above, and
calculated the minimum precision (max CV in estimated biomass)
needed to avoid crossing a critical threshold given a resource
extraction rate and risk tolerance. We then plotted the combi-
nations of monitoring and harvest rates that afford a certain level
of risk for crossing the biological ormanagement critical threshold.

One approach that might mitigate the cost of monitoring is a
precautionary biomass level belowwhichmonitoring is conducted
with high precision and above which low-precision monitoring is
implemented. To demonstrate the utility of such a precautionary
buffer, we quantified the NPV, the probability of crossing a critical
threshold, and the cost of the resource given three monitoring
approaches: (i) high precision (CV= 0.1), (ii) low precision (CV=
0.5) and (iii) an adaptive approach where monitoring precision
changes every year based on estimated biomass (precision is
low (CV= 0.5) when B̂t . BMSY and is high (CV= 0.1) when
B̂t , BMSY). For many populations, BMSY may serve as an appro-
priate trigger for increased monitoring, both because BMSY is
likely far away from a depensation threshold in most populations.
Depending on the ecosystem type and management organization,
the cost of monitoringmay be borne by the industry or by the gov-
ernment. Because we use a heuristic model, the exact monetary
cost from increased monitoring or profit from increased harvest
effort is arbitrary. Therefore, we explore the relative cost of moni-
toring and profit from harvest by plotting the ratio of NPV to
monitoring costs for a range of maximum harvest efforts.
3. Results
(a) How do monitoring precision and harvest rate affect

the risk of population collapse and the value of the
resource?

Populations with lower monitoring precision are more volatile
through time and more likely to spend time at low biomass
and categorized as in the ‘danger zone’ (figure 1). These con-
ditions arise because low monitoring effort leads to imprecise
estimates of true biomass, which causes the population to
experience frequent under- and over-harvesting. Consequently,
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the population is most likely to cross a critical threshold at high
harvest rates and under low monitoring precision (figure 2a).
Furthermore, over- and underestimates of population abun-
dance due to low monitoring precision (CV= 0.5) leads to
economic inefficiencies. NPV of a resource is highest when
monitoring precision is high (CV= 0.1), and harvest pressure
is at HMSY (figure 2b). High-precision monitoring allows the
population to be harvested close to BMSY, which maximized
population growth and yield. The benefits of high monitoring
precision (i.e. CV= 0.1 relative to CV= 0.5) is minimal when
the maximum harvest rate is low, but increases as harvest rate
exceeds 0.5HMSY. The benefits of high monitoring precision
increase from 0.5HMSY to HMSY and stabilize but remain
highly beneficial for values greater than HMSY. These effects
of monitoring and maximum harvest rates generally hold for
systems where the critical threshold happens at higher biomass
(e.g. A = 20 or A = 30), but the consequences of low-precision
monitoring and higher harvest rates tend to increase as depen-
sation intensifies (electronic supplementary material, figure S3).

Importantly, our model is also highly relevant to popu-
lations without critical thresholds (A = 0), where high-
precision monitoring and moderate maximum harvest rates
lead to the highest NPV. The effects of monitoring precision
and harvest rate were also contingent on the environmental
stochasticity and the harvest model. When environmental
stochasticity is integrated into the model in the form of vari-
ation in intrinsic growth rate, the probability of population
collapse increases and NPV declines for a given level of moni-
toring precision (electronic supplementary material, 4, figure
S4). A more conservative harvest model where harvest ceases
when the population is estimated below maximum sustain-
able yield produced marginal decreases in the probability
of population collapse and a decrease in NPV (electronic
supplementary material 5, figure S5).
est for high-precision estimates. In (b), precision (CV of the population) is
plotted as high precision in light green and low precision in blue.
(b) Does the value of monitoring increase with higher
proximity to a critical threshold? If not, why?

Our results suggest highermonitoring precision always leads to
higher economic value than low-precision monitoring
(figure 3). However, the return on monitoring investment for
the most precise monitoring (CV= 0.1) is low when harvest
rates are very low, because low harvest rates are typically
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associated with very high biomass and consequently have low
risk of collapse. Even when monitoring is imprecise, very con-
servative harvest rates still lead to very high relative resource
biomass through time. The value of precise monitoring
increases substantially as the population spends an increasing
amount of time at low biomass and at higher risk of collapse
(proportional to line segment lengths in figure 3). However,
the relative benefits of heavy monitoring decline somewhat as
populations spend increasingly high amounts of time overhar-
vested at very high harvest rates > 1.0HMSY. Thus, heavyharvest
rates increase the risk of collapse, but can be profitable if the
population is carefully monitored.

(c) Can monitoring promote resilience of harvested
populations?

Populations that are poorly monitored and heavily harvested
tend to regularly dip into the danger zone (figure 1). This
effect of poor monitoring precision is exacerbated by heavy har-
vest pressure, which can lead to rapid dips in population
biomass in short periods of time when populations are
incorrectly estimated as abundant and subsequently overhar-
vested. However, high-precision monitoring and modest
harvest pressure increase the frequency at which populations
recover from the danger zone (figure 4). Carefully monitored
populations with high harvest pressure still occasionally
become overharvested and approach a critical threshold, but
have a much higher frequency of recovery back to a biomass
that will maximize yield compared to populations with less
monitoring. This increased recovery afforded by high-precision
monitoring is a critical complement to the economic benefits
that maximize return on investment.

(d) How can managers balance the costs and benefits
of monitoring populations prone to collapse?

The higher recovery potential of heavily monitored popu-
lations can be actualized for a manager interested in
balancing risk and economic gain in a population. Higher
exploitation rates and lower monitoring investment
increase the risk that a population’s biomass will fall
below a critical threshold. We defined a safe operating
space as a combination of exploitation effort and the mini-
mum precision required to avoid crossing a critical
biological threshold. The safe operating space becomes nar-
rower as the manager or stakeholder’s aversion to risk
increases (figure 5). In other words, risk-averse managers
or stakeholders will benefit from a more conservative
approach with lower harvest rates and higher monitoring
precision.

Precautionary buffers offer a clear opportunity for man-
agers to maintain high profits, reduce monitoring costs and
significantly reduce the risk of population collapse. The
least expensive monitoring option where monitoring pre-
cision is always low (CV = 0.5) offers the highest relative
return on investment, but is risky, with the highest prob-
ability of crossing the biological threshold (figure 6,
triangles). By contrast, the most expensive monitoring
option of always monitoring with high precision (CV =
0.1) offers the highest NPV, the lowest probability of cross-
ing a critical threshold, but also a relatively low return on
investment (figure 6, circles). However, always maintaining
high-precision monitoring may be unattainable given the
high cost. A precautionary buffer offers an intermediate
solution where the cost of monitoring is substantially
reduced, in exchange for minor reductions in NPV, a
higher return on investment and a moderate increase in
the risk of collapse (figure 6, squares). Therefore, a precau-
tionary buffer may be an effective approach for balancing
these trade-offs by maintaining relatively high profits
while minimizing monitoring. Naturally, the costs and
benefits of any given strategy will potentially change for
any given system depending on the specific costs and
benefits of monitoring and the perceived consequences of
crossing a threshold.
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4. Discussion
The monitoring of biological systems is typically constrained
by financial and logistical resources. Our results demonstrate
that high-precision monitoring can promote the recovery of
an overharvested population, mitigate the risk of population
collapse and maximize the economic value of a resource.
While our case study was inspired by fisheries management
strategies and focused on a single species, our findings are
generally applicable to other management systems and
taxa. Our results also provide insights for monitoring
and management at the ecosystem-level, where human
impacts such as over-harvesting, nutrient limitation and
habitat fragmentation can cause ecosystems to cross critical
thresholds and undergo regime shifts [23], which can have
major socio-economic consequences [24]. Generally, man-
agers seeking to avoid crossing critical thresholds, recover
from overuse and maximize value, will increasingly benefit
from high-precision monitoring as systems spend more
time near their critical biological or management threshold.

Conservation biologists are increasingly aware that not
all monitoring is equally valuable [2,3]. Rather, as resource
exploitation rates increase and the system approaches a critical
threshold, the risk of collapse increases. Consequently, the
value of monitoring information also increases the more a
population spends time at low biomass in proximity to a criti-
cal biological threshold beyond which recovery is impossible.
While the notion that the value of information changes is intui-
tive and has been used in resource management (e.g. the
design of protected areas [25]), it is rarely used to justify a
change in monitoring effort. Instead, monitoring investment
often is a product of funding, availability of technology, per-
sonnel logistics, and perceptions of risk among managers
and resource users. Improving our understanding of how eco-
system characteristics dictate the trade-off between precision in
estimates of population status and the costs ofmismanagement
will benefit both stakeholders, scientists andmanagerswho are
working with finite resources.

Variation in the value of monitoring, therefore, requires an
approach that balances cost of monitoring with the risk of cat-
astrophe. Our results support previous studies highlighting the
utility of precautionary management approaches as a way to
prevent populations from falling below critical thresholds,
especially when there is uncertainty in stock status and risk
is thought to be high [26]. We demonstrated how an adaptive
monitoring programme that takes advantage of precautionary
buffers, but does not track changes intensively when popu-
lation biomass is high, can minimize monitoring costs,
increase profits, prevent a system from collapsing and promote
the recovery of overharvested systems.

(a) What if the existence or location of the critical
threshold is ambiguous?

In systems with critical biological thresholds, decision makers
are rarely fortunate enough to have perfect knowledge of bio-
logical thresholds until after the threshold has been crossed
[27]. Indeed, surprises such as crossing a threshold are inevi-
table in many systems [28]. Uncertainty about the location of
a threshold presents challenges, particularly in the face of
global change, where the strength and location of thresholds
may well change as ecosystems transform. Gaining greater
certainty about the location of a critical threshold can be
achieved through adaptive management [29], which has a
long history in ecological literature and has been widely
used to inform fisheries management based on optimal con-
trol [30]. The closed-loop simulation we employed here takes
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a different approach, providing insight into how a fixed set of
management strategies performs with various levels of moni-
toring investment and in the face of multiple forms of
uncertainty. Future work could marry our ideas with those
emerging in the decision optimization literature [31]. For
example, Gaussian process stochastic dynamic programming,
which makes few structural assumptions about population
production functions, can allow managers to identify optimal
control rules in light of uncertainty in threshold locations
[32]. Alternatively, early warning indicators such as rising
variance or changes in autocorrelation may offer a signal
for when a system is approaching a threshold [33,34],
though detection of a threshold using these indicators likely
requires high-precision and frequent precise monitoring.
However, even with better monitoring and analysis, some
uncertainty is irreducible [35]. Such irreducible uncertainty
(e.g. due to stochasticity in recruitment) can amplify the
risks associated with limited monitoring effort and are critical
for managers to consider.

(b) The value of monitoring depends on the
stakeholder

Determining the value of monitoring information also likely
extends beyond the organization bearing the monitoring
costs to include the value to other stakeholders. The high
volatility that emerges from low monitoring investment may
be particularly challenging to some stakeholders while others
might be less affected. For example, surveys of Kenyan fishers
suggest that socio-economic background drives willingness
to leave a fishery; wealthy individuals were more likely
to leave the fishery after large declines in catches, whereas
low-income households would become stuck in poverty
traps due to a lack of resources to switch occupations [36]. By
contrast, large industrial fishing operations may have higher
travel capacity to harvest in another location where the
resource remains plentiful, or are capable of investing in the
gear and infrastructure needed to switch to harvesting a differ-
ent resource [37]. To achieve equity among stakeholders,
management will need to account for asymmetry in risk
aversion among stakeholders, which in turn will be a critical
step in integrating the value of information as a driver of
monitoring investment.
(c) Consideration of moral hazards
Our examination of the relative costs and benefits of different
monitoring strategies suggests that high-precision monitoring
is always the most effective way to maximize yield and avoid
crossing a limit reference point or critical biological threshold.
However, high monitoring precision can be extremely
expensive, and the feasibility of payment depends on the
state of the system and the resources that industry, stake-
holders, non-governmental organizations or government
agencies have to cover the costs of monitoring. In some
circumstances ‘moral hazards’ can emerge, where one organ-
ization is involved in a risky activity (harvest) but is protected
against risk by another party that incurs the cost [38]. When
contracts are initially based on payoff alone and intensive
monitoring is cost prohibitive, lower monitoring precision
combined with shared risk among multiple parties is a
common solution applied to moral hazards.

In the case of resource monitoring, shared risk strategies
can include the industry sharingmonitoring costswith govern-
ment agencies. However, shared monitoring costs do not
always align with economic incentives. For example, our
model suggests that an economic incentive exists for an organ-
ization to support increasedmonitoring as long as the expected
financial benefit from resource extraction exceeds the financial
cost of monitoring. By contrast, agencies are incentivized to
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keep the population at a valuable biomass, but tominimize tax-
payer’s costs. This asymmetry in incentives for different
stakeholders poses a challenge, because agencies often have
limited resources to provide high-precision monitoring, while
the industry is often incentivized to harvest as much of the
resource as possible at the lowest cost. Thus, context-appropri-
ate solutions that are economically viable and cost-effective,
and that incentivize environmental protection, are critical.

Commercial fisheries offer an interesting case study in
placing the burden of monitoring costs on the industry
versus the government. For example, a subset of fisheries in
New Zealand, Canada and Australia, the fishing industry is
primarily responsible for monitoring costs, with the philos-
ophy that the burden of proof for sustainability is on the
stakeholder interested in exploiting the system [15]. An
example of this is the commercial Pacific herring fishery in
the Canadian North Pacific, where monitoring of spring her-
ring spawns was historically funded by one of several
stakeholders, the fishing industry. However, the fishery
crossed a limit reference point over a decade ago and has
not fully recovered [37]. As a consequence, monitoring
effort has declined, which impacts the precision of biomass
estimates, and may prolong closures. This case highlights a
key consideration in monitoring programmes: if information
is most valuable as a fishery approaches and recovers from
collapse, it is best to ensure that funding for monitoring is
independent from stock size.

(d) Looking forward
Our model is a simplified harvested system that illustrates
how monitoring precision can be more or less valuable
depending on how close an ecosystem is to a biological or
management threshold. Our goal in this study was to provide
strategy; however, to develop tactics based on the principles
described above, managers will need to integrate additional
ecological and economic complexity. Ecologically, shifts in
productivity, species interactions and environmental variabil-
ity can change a species’ carrying capacity and rebound
potential [39], and consequently alter what harvest rates
maximize yield and avoid collapse. Moreover, including age
or size structure in the model has the potential to change
the autocorrelation structure in the model and likely modify
the importance of monitoring. Economically, it will be impor-
tant to consider additional complexity in the shape of the cost
function for monitoring, and dynamic prices for a harvested
species such as increases in price as species become rare [40].
Moreover, as motoring technology advances (e.g. through
remote sensing), the relative cost of high-precision
monitoring may decrease, allowing high frequency monitor-
ing at all times. Consideration of all of these additional
sources of complexity will benefit managers considering
how to optimize their monitoring strategies now and in the
future as ecosystems change.
5. Conclusion
Managers, policy makers and stakeholders are tasked with
connecting monitoring effort, thresholds and the state of the
system to short-term management decisions. This will be
difficult given the inherent limitations in assessing the state
of the system and because the location of critical thresholds
is not always known. Additional difficulties emerge because
of misaligned economic incentives and structures that deter
or constrain heavy monitoring when yields are near a critical
threshold, and because stakeholders differ in their risk of col-
lapse given their divergent ability and flexibility to adapt
once a population or ecosystem has crossed a critical threshold.
Seeking creative strategies that promote investment inmonitor-
ing when it is most valuable has the potential to increase
sustainable natural resource use and conservation.
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